WE ARE HIRING FOR LIA/PRAKTIK RIGHT NOW - READ MORE
    Back to Optimization Hub
    Technical Setup
    Advanced

    API Documentation for AI Discovery

    Structure API documentation so AI coding assistants can recommend and explain your APIs effectively.

    Rankad.ai Team
    October 16, 2025
    13 min read
    API Documentation for AI Discovery

    API Documentation for AI Discovery

    Why API Docs Matter for AI Search

    AI coding assistants like GitHub Copilot, ChatGPT Code Interpreter, and Claude increasingly recommend APIs. Well-documented APIs receive 8.2x more AI recommendations.

    OpenAPI/Swagger Specification

    Implement OpenAPI 3.0+ spec:

    openapi: 3.0.0
    info:
      title: Rankad.ai API
      description: Track your AI search visibility across ChatGPT, Perplexity, and Gemini
      version: 1.0.0
      contact:
        name: API Support
        email: api@rankad.ai
        url: https://rankad.ai/api/support
      license:
        name: Apache 2.0
        url: https://www.apache.org/licenses/LICENSE-2.0.html
        
    servers:
      - url: https://api.rankad.ai/v1
        description: Production server
      - url: https://api-staging.rankad.ai/v1
        description: Staging server
        
    paths:
      /citations:
        get:
          summary: Get AI citations for your brand
          description: Retrieve all AI citations for your tracked keywords across supported AI platforms
          operationId: getCitations
          tags:
            - Citations
          parameters:
            - name: platform
              in: query
              description: Filter by AI platform (chatgpt, perplexity, gemini, copilot)
              schema:
                type: string
                enum: [chatgpt, perplexity, gemini, copilot, all]
            - name: date_from
              in: query
              description: Start date (YYYY-MM-DD)
              schema:
                type: string
                format: date
          responses:
            '200':
              description: Successful response
              content:
                application/json:
                  schema:
                    type: object
                    properties:
                      citations:
                        type: array
                        items:
                          $ref: '#/components/schemas/Citation'
                          
    components:
      schemas:
        Citation:
          type: object
          required:
            - id
            - url
            - platform
            - prompt
            - position
            - date
          properties:
            id:
              type: string
              description: Unique citation identifier
            url:
              type: string
              format: uri
              description: URL of cited content
            platform:
              type: string
              enum: [chatgpt, perplexity, gemini, copilot]
              description: AI platform where citation appeared
            prompt:
              type: string
              description: User query that generated citation
            position:
              type: integer
              minimum: 1
              description: Citation position in response
            date:
              type: string
              format: date-time
              description: Citation timestamp
    

    Documentation Structure

    1. Getting Started Guide

    # Getting Started with Rankad.ai API
    
    ## Quick Start (5 minutes)
    
    ### 1. Get Your API Key
    
    Sign up at [rankad.ai/api](https://rankad.ai/api) and generate your API key from the dashboard.
    
    ### 2. Make Your First Request
    
    ```bash
    curl -X GET "https://api.rankad.ai/v1/citations" \
      -H "Authorization: Bearer YOUR_API_KEY" \
      -H "Content-Type: application/json"
    

    3. Parse the Response

    {
      "citations": [
        {
          "id": "cit_123abc",
          "url": "https://yoursite.com/article",
          "platform": "chatgpt",
          "prompt": "What is AI search optimization?",
          "position": 2,
          "date": "2025-10-15T10:30:00Z"
        }
      ],
      "total": 1,
      "page": 1
    }
    

    Next Steps

    
    ### 2. Code Examples in Multiple Languages
    
    Provide examples in popular languages:
    
    **Python**:
    ```python
    import requests
    
    api_key = "your_api_key"
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }
    
    response = requests.get(
        "https://api.rankad.ai/v1/citations",
        headers=headers,
        params={"platform": "chatgpt"}
    )
    
    citations = response.json()
    print(f"Found {len(citations['citations'])} citations")
    

    JavaScript/Node.js:

    const axios = require('axios');
    
    const apiKey = 'your_api_key';
    const config = {
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    };
    
    axios.get('https://api.rankad.ai/v1/citations', config)
      .then(response => {
        console.log(`Found ${response.data.citations.length} citations`);
      })
      .catch(error => console.error(error));
    

    cURL:

    curl -X GET "https://api.rankad.ai/v1/citations?platform=chatgpt" \
      -H "Authorization: Bearer YOUR_API_KEY" \
      -H "Content-Type: application/json"
    

    3. Interactive API Explorer

    Embed interactive documentation:

    • Swagger UI
    • Redoc
    • Postman Collections
    • GraphQL Playground (if applicable)

    4. Error Documentation

    Document all error responses:

    ## Error Handling
    
    ### Standard Error Response
    
    ```json
    {
      "error": {
        "code": "invalid_request",
        "message": "The 'platform' parameter must be one of: chatgpt, perplexity, gemini, copilot, all",
        "details": {
          "parameter": "platform",
          "provided_value": "bing",
          "allowed_values": ["chatgpt", "perplexity", "gemini", "copilot", "all"]
        },
        "documentation_url": "https://rankad.ai/api/errors#invalid_request"
      }
    }
    

    Common Error Codes

    | Code | HTTP Status | Description | Solution | |------|-------------|-------------|----------| | invalid_request | 400 | Request parameters invalid | Check parameter format | | unauthorized | 401 | Invalid API key | Verify API key is correct | | forbidden | 403 | Insufficient permissions | Upgrade plan or request access | | not_found | 404 | Resource doesn't exist | Check resource ID | | rate_limit_exceeded | 429 | Too many requests | Implement backoff strategy | | server_error | 500 | Internal server error | Retry with exponential backoff | ```

    AI-Optimized Documentation Elements

    1. Use Cases Section

    ## Common Use Cases
    
    ### 1. Daily Citation Monitoring
    
    Track new citations every 24 hours:
    
    ```python
    def monitor_daily_citations():
        today = datetime.now().strftime("%Y-%m-%d")
        citations = get_citations(date_from=today)
        
        if len(citations) > 0:
            send_alert(f"New citations: {len(citations)}")
    

    2. Competitive Analysis

    Compare your citations with competitors:

    your_citations = get_citations(domain="yoursite.com")
    competitor_citations = get_citations(domain="competitor.com")
    
    visibility_gap = len(competitor_citations) - len(your_citations)
    
    
    ### 2. Detailed Response Schemas
    
    Document every field:
    
    ```markdown
    ### Citation Object
    
    | Field | Type | Description | Example |
    |-------|------|-------------|---------|
    | id | string | Unique citation identifier | "cit_123abc" |
    | url | string | Full URL of cited page | "https://site.com/page" |
    | platform | string | AI platform name | "chatgpt" |
    | prompt | string | User query (truncated if >200 chars) | "What is AIO?" |
    | position | integer | Citation position (1-indexed) | 2 |
    | context | string | Surrounding text from AI response | "According to..." |
    | date | string | ISO 8601 timestamp | "2025-10-15T10:30:00Z" |
    

    3. Versioning Strategy

    Document API versions clearly:

    ## API Versioning
    
    Current version: **v1**
    
    ### Version History
    
    - **v1** (Current) - Released October 2025
      - Initial release
      - Endpoints: /citations, /keywords, /analytics
      
    ### Deprecation Policy
    
    - 12 months notice before deprecation
    - 6 months of parallel v1/v2 support
    - Migration guides provided
    
    ### Version Specification
    
    Specify version in URL:
    

    https://api.rankad.ai/v1/citations

    Technical SEO for API Docs

    1. Software Application Schema

    {
      "@context": "https://schema.org",
      "@type": "SoftwareApplication",
      "name": "Rankad.ai API",
      "applicationCategory": "DeveloperApplication",
      "description": "REST API for tracking AI search citations across ChatGPT, Perplexity, and Gemini",
      "operatingSystem": "Any",
      "offers": {
        "@type": "Offer",
        "price": "0",
        "priceCurrency": "USD"
      },
      "documentation": "https://rankad.ai/api/docs"
    }
    

    2. TechArticle Schema

    For tutorials and guides:

    {
      "@context": "https://schema.org",
      "@type": "TechArticle",
      "headline": "Getting Started with Rankad.ai API",
      "description": "Complete guide to integrating AI citation tracking",
      "dependencies": "Python 3.8+, requests library",
      "proficiencyLevel": "Beginner"
    }
    

    SDK Development

    Create official SDKs:

    Python SDK

    from rankad import Client
    
    client = Client(api_key="your_key")
    citations = client.citations.list(platform="chatgpt")
    

    JavaScript SDK

    import { RankadClient } from '@rankad/sdk';
    
    const client = new RankadClient({ apiKey: 'your_key' });
    const citations = await client.citations.list({ platform: 'chatgpt' });
    

    Document SDK installation and usage prominently.

    Measuring API Documentation Success

    Track:

    • API adoption rate
    • Documentation page views
    • Code example copy rates
    • Support ticket volume (lower is better)
    • AI assistant API recommendations

    Monitor with Rankad.ai's developer tracking tools.

    Tags:
    API
    documentation
    developers
    technical SEO

    Related Guides

    AI.txt Implementation Guide
    Technical Setup
    Beginner

    AI.txt Implementation Guide

    Control how AI bots crawl and cite your content with properly configured AI directives files.

    Read Guide
    LLM.txt Implementation Guide
    Technical Setup
    Intermediate

    LLM.txt Implementation Guide

    Structure your content for optimal AI consumption with properly formatted LLM.txt files.

    Read Guide
    Structured Data & Schema Markup for AI
    Technical Optimization
    Advanced

    Structured Data & Schema Markup for AI

    Make your content machine-readable with advanced schema markup optimized for AI consumption.

    Read Guide

    Ready to implement these strategies?

    Book a consultation to optimize your entire AI search presence

    Book Strategy Session